
File System Management
As used in PowerPC system version

Thu, Mar 23, 2000

This note describes the usual practices of file system management in the PowerPC
version of the system code.

Uses of file system
The earlier version of the system code that is based upon the 68K CPU family

includes a home brew nonvolatile memory file system that serves as a repository
mostly for local and page applications. When the system initializes, it automatically
loads and starts execution of all resident enabled local applications. By this means, the
enabled suite of local applications functions to extend the system code. Simple
examples of local applications, which are actually structured as procedures called by
the system code, include closed loops, Acnet task servers, and UDP port servers. The set
of local applications need by each node can vary, although the system code is the same.
Page applications are similar to local applications, but they have a simple page display
user interface. Only one page application can be active at one time, but many local
applications can be enabled and running at the same time. Although local applications
do not support a user interface, one particular page application serves as a user
interface for all local applications, in that it monitors the local application activity,
supports configuration of each, and allows access to its parameters.

The Download page application supports a simple directory listing facility of the files in
any node, as well as copying of files between nodes. This copy support preserves the
version date of each program, so that it can serve to identify the actual version of a file
that exists in any node. When a new version of a program is prepared on the
development system, it is downloaded into one node via the TFTP protocol, perhaps for
testing. This action establishes the version date of the file. As a matter of practice, if it is
then desired to spread the new version to other nodes, the Download page is used to
make the transfer, since using TFTP to target another node from the development
system would establish a new version date for the same version of the file.

The contents of a program file in the 68K system is merely the raw position-
independent code produced by the linker. Loading the code into memory for execution
involves only a memory copy into allocated dynamic memory. Support for calls into
system routines from local/page applications is supported via a TRAP facility. A short
library stub executes a TRAP instruction with a routine number in a register; the
address of that routine’s entry point is found in a register upon return from the TRAP
exception, whereupon a branch to subroutine is executed. Any arguments of the system
routine were already placed on the stack by the calling program before the library stub
was invoked.

New system plan
For the new PowerPC system, the process of invoking a routine in the system

code is much more complicated. Under VxWorks, the program files are not really
linked into executable code; the result of program preparation is only an object file that
includes structures containing executable code, data, and external references. To load
such a program file into memory for execution, the VxWorks “ld” command is used,
which interprets the file format and places the code into one allocated area and the data
into another area. Linkages to system routines cannot be dealt with in the same way as

before. For this reason, the new system, rather than using a home brew file system, uses
a RAM disk that is maintained under VxWorks as a DOS-format file system. In this way,
the “ld” command can be used to bring a program into memory for execution. All the
complexities of the PEF object file format will be interpreted by VxWorks. Linkages to
system routines will be done automatically by the VxWorks dynamic loader. Each
program file has external references to system routines only; none may have external
references to other loaded files, as that would make downloading a new version of a
single program problematic. (One would have to be sure to unload, and reload, all
referenced file chains at the same time.)

The sequence of events in program preparation and installation for the new system is
similar to that of the old, even if the program file format is different. The new feature
that is added is to use the file version date that was established at the development
system, so that multiple TFTP downloads of the same program file version will result in
a consistent version date. This is accomplished by including the version date in the
destination file name that is handed to the TFTP client. (This feature can also be added to
the 68K system TFTP server support.)

Internal file directory
To assist the system code in managing the file system, the CODES system table

provides a table directory facility. The format of a CODES table entry includes the
following:

8-character file name
file size
nonvolatile memory address (68K only)
new download flag
execution address
checksum (68K only)
version date (calendar yr-mo-da-hr-mn-sc)
usage counter (diagnostic)

File names are formed by concatenating a 4-character type name with a 4-character file
name. The type name LOOP is used for local applications; PAGE is used for page
applications; DATA is used for data files; and HELP is used for the text file that holds
prompting information for local application parameters. Examples of 8-character file
names are LOOPGRAD, which is a closed loop local application, and PAGEMDMP, which is
the Memory Dump page application.

The “new download flag” is used to support the automatic switch to a new local
application file version. If a new version of an enabled (executing) local application
program is downloaded, the new download flag is set, and the system notices it to
automatically invoke the previous version that is running (in dynamic memory) to
terminate and release its resources, then perform the operation of loading the new
version into memory and invoking it for initialization.

The execution address is used for invoking the program. For the PowerPC version, this
will be the address of the transition vector which serves the same purpose of providing
the means to invoke the program. It is important that this be efficient, since all enabled
local application instances are invoked at 15Hz. (Instances refer to cases in which the
same local application is invoked multiple times with different parameters and
context.)

p. 2

The version date identifies the version of the program that exists in the nonvolatile file
system. Although it may exist as a part of the DOS-format file system in VxWorks
nodes, it is provided here to be accessed via the usual Classic protocol methods.

Version date
The issue of maintaining a file version date is an important one. We need to keep

the calendar date associated with each file as a documenting device so we can see what
version is installed in any given node. The version date is in a 6-byte BCD format that
specifies yr, mo, da, hr, mn, sc and is stored in a field of the associated CODES table entry
with that file.

When a new file is transferred into a node using TFTP, the date associated with that file
in the development system is obtained and formatted into the 6-byte version date form.
An ascii representation of this date is appended to the file name to form the destination
file name for use with the standard TFTP client-initiated transfer. The special TFTP server
on the target node notices the 8-character file name followed by an ascii version date. It
strips off the version date from the name and opens a RAM disk file for writing the data
that is passed from the client. The version date is then recorded in the CODES table entry
at the conclusion of the transfer. The RAM disk file system also carries a date, and this
can be made the same, even though we may not be able to simply access it via
commands at a VxWorks prompt.

So, a special TFTP server is required that interprets file names with optional version
dates appended. (Without an appended version date, it will simply use the current
time-of-day as a version date.) Special file name formats allow the server to recognize
and permit access to various system tables and even to general system memory.

As to what form the appended version date might take, suppose we have an example of
a page application for the memory dump display, which has the 8-character name
PAGEMDMP. Its PEF file name on the development system is PAGEMDMP.o. The variation of
this name sent to a target node via TFTP protocol may be PAGEMDMP.o.000322144906.
The appended version date would consist of a dot and 12 decimal characters that
signify the version date in the form YrMoDaHrMnSc. The total file name length would be
8+3+12, or 23 characters.

Note that the development system file name can be PAGEMDMP.o. For the TFTP transfer,
this is used as the source file name; this same name appended with the ascii form of the
version date is used as the destination file name.

Real time concern
It is currently possible to download a new version of a program file without

impacting the real time (15Hz) performance of the front end. The VxWorks version of
the system will necessarily use RAM disk software that will presumably operate more
slowly. We will have to see what effect downloading has on an operating VxWorks
system. There is no backup plan. If it should cause problems for which we cannot
devise a work-around, we shall have to refrain from updating such files during
accelerator operations, just as we refrain from updating system code today, which
necessitates a reboot that is usually unpopular with operations personnel.

p. 3

